Bayesian Nonparametrics for Causal Inference and Missing Data

Bayesian Nonparametrics for Causal Inference and Missing Data
Author :
Publisher : CRC Press
Total Pages : 0
Release :
ISBN-10 : 036734100X
ISBN-13 : 9780367341008
Rating : 4/5 (008 Downloads)

Book Synopsis Bayesian Nonparametrics for Causal Inference and Missing Data by : Michael J. Daniels

Download or read book Bayesian Nonparametrics for Causal Inference and Missing Data written by Michael J. Daniels and published by CRC Press. This book was released on 2023-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Nonparametric Methods for Missing Data and Causal Inference provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. The BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification, unlike parametric methods. The overall strategy is to first specify BNP models for observed data and second to specify additional uncheckable assumptions to identify estimands of interest. The book is divided into three parts. Part I develops the key concepts in causal inference and missing data, and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials. Features: * Thorough discussion of both BNP and its interplay with causal inference and missing data * How to use BNP and g-computation for causal inference and nonignorable missingness * How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions * Detailed case studies illustrating the application of BNP methods to causal inference and missing data * R-code and/or packages to implement BNP in causal inference and missing data problems The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically-sophisticated epidemiologists and medical researchers.


Bayesian Nonparametrics for Causal Inference and Missing Data Related Books

Bayesian Nonparametrics for Causal Inference and Missing Data
Language: en
Pages: 0
Authors: Michael J. Daniels
Categories:
Type: BOOK - Published: 2023-08-23 - Publisher: CRC Press

DOWNLOAD EBOOK

Bayesian Nonparametric Methods for Missing Data and Causal Inference provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or
Bayesian Nonparametrics for Causal Inference and Missing Data
Language: en
Pages: 263
Authors: Michael J. Daniels
Categories: Mathematics
Type: BOOK - Published: 2023-08-23 - Publisher: CRC Press

DOWNLOAD EBOOK

Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or condit
Bayesian Nonparametrics
Language: en
Pages: 309
Authors: Nils Lid Hjort
Categories: Mathematics
Type: BOOK - Published: 2010-04-12 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount
Nonparametric Bayesian Inference in Biostatistics
Language: en
Pages: 448
Authors: Riten Mitra
Categories: Medical
Type: BOOK - Published: 2015-07-25 - Publisher: Springer

DOWNLOAD EBOOK

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Ba
Causal Inference in Statistics, Social, and Biomedical Sciences
Language: en
Pages: 647
Authors: Guido W. Imbens
Categories: Business & Economics
Type: BOOK - Published: 2015-04-06 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.