Hands-On Explainable AI (XAI) with Python

Hands-On Explainable AI (XAI) with Python
Author :
Publisher : Packt Publishing Ltd
Total Pages : 455
Release :
ISBN-10 : 9781800202764
ISBN-13 : 1800202768
Rating : 4/5 (768 Downloads)

Book Synopsis Hands-On Explainable AI (XAI) with Python by : Denis Rothman

Download or read book Hands-On Explainable AI (XAI) with Python written by Denis Rothman and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces. Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook Description Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex. Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications. You will build XAI solutions in Python, TensorFlow 2, Google Cloud’s XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces. By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI. What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is for This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book. Some of the potential readers of this book include: Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications


Hands-On Explainable AI (XAI) with Python Related Books

Hands-On Explainable AI (XAI) with Python
Language: en
Pages: 455
Authors: Denis Rothman
Categories: Computers
Type: BOOK - Published: 2020-07-31 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to dep
Explainable AI with Python
Language: en
Pages: 202
Authors: Leonida Gianfagna
Categories: Computers
Type: BOOK - Published: 2021-04-28 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book provides a full presentation of the current concepts and available techniques to make “machine learning” systems more explainable. The approaches
Interpretable Machine Learning with Python
Language: en
Pages: 737
Authors: Serg Masís
Categories: Computers
Type: BOOK - Published: 2021-03-26 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

A deep and detailed dive into the key aspects and challenges of machine learning interpretability, complete with the know-how on how to overcome and leverage th
Interpretable Machine Learning
Language: en
Pages: 320
Authors: Christoph Molnar
Categories: Computers
Type: BOOK - Published: 2020 - Publisher: Lulu.com

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simp
Hands-On Mathematics for Deep Learning
Language: en
Pages: 347
Authors: Jay Dawani
Categories: Computers
Type: BOOK - Published: 2020-06-12 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear alge