Hume's Problem Solved
Author | : Gerhard Schurz |
Publisher | : MIT Press |
Total Pages | : 401 |
Release | : 2019-05-07 |
ISBN-10 | : 9780262352451 |
ISBN-13 | : 0262352451 |
Rating | : 4/5 (451 Downloads) |
Download or read book Hume's Problem Solved written by Gerhard Schurz and published by MIT Press. This book was released on 2019-05-07 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new approach to Hume's problem of induction that justifies the optimality of induction at the level of meta-induction. Hume's problem of justifying induction has been among epistemology's greatest challenges for centuries. In this book, Gerhard Schurz proposes a new approach to Hume's problem. Acknowledging the force of Hume's arguments against the possibility of a noncircular justification of the reliability of induction, Schurz demonstrates instead the possibility of a noncircular justification of the optimality of induction, or, more precisely, of meta-induction (the application of induction to competing prediction models). Drawing on discoveries in computational learning theory, Schurz demonstrates that a regret-based learning strategy, attractivity-weighted meta-induction, is predictively optimal in all possible worlds among all prediction methods accessible to the epistemic agent. Moreover, the a priori justification of meta-induction generates a noncircular a posteriori justification of object induction. Taken together, these two results provide a noncircular solution to Hume's problem. Schurz discusses the philosophical debate on the problem of induction, addressing all major attempts at a solution to Hume's problem and describing their shortcomings; presents a series of theorems, accompanied by a description of computer simulations illustrating the content of these theorems (with proofs presented in a mathematical appendix); and defends, refines, and applies core insights regarding the optimality of meta-induction, explaining applications in neighboring disciplines including forecasting sciences, cognitive science, social epistemology, and generalized evolution theory. Finally, Schurz generalizes the method of optimality-based justification to a new strategy of justification in epistemology, arguing that optimality justifications can avoid the problems of justificatory circularity and regress.