Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
Author :
Publisher : Springer Science & Business Media
Total Pages : 150
Release :
ISBN-10 : 9781475754629
ISBN-13 : 1475754620
Rating : 4/5 (620 Downloads)

Book Synopsis Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions by : Stephen C. Milne

Download or read book Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions written by Stephen C. Milne and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found. The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, `This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.' Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.


Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions Related Books

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions
Language: en
Pages: 150
Authors: Stephen C. Milne
Categories: Mathematics
Type: BOOK - Published: 2013-11-27 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 year
Partitions, q-Series, and Modular Forms
Language: en
Pages: 233
Authors: Krishnaswami Alladi
Categories: Mathematics
Type: BOOK - Published: 2011-11-01 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Partitions, q-Series, and Modular Forms contains a collection of research and survey papers that grew out of a Conference on Partitions, q-Series and Modular Fo
Ramanujan's Lost Notebook
Language: en
Pages: 437
Authors: George E. Andrews
Categories: Mathematics
Type: BOOK - Published: 2005-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivas
Number Theory in the Spirit of Liouville
Language: en
Pages: 307
Authors: Kenneth S. Williams
Categories: Mathematics
Type: BOOK - Published: 2011 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A gentle introduction to Liouville's powerful method in elementary number theory. Suitable for advanced undergraduate and beginning graduate students.
Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics
Language: en
Pages: 287
Authors: Frank G. Garvan
Categories: Computers
Type: BOOK - Published: 2013-12-01 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathem