Nonlinear Wave Equations
Author | : Walter A. Strauss |
Publisher | : American Mathematical Soc. |
Total Pages | : 106 |
Release | : 1990-01-12 |
ISBN-10 | : 9780821807255 |
ISBN-13 | : 0821807250 |
Rating | : 4/5 (250 Downloads) |
Download or read book Nonlinear Wave Equations written by Walter A. Strauss and published by American Mathematical Soc.. This book was released on 1990-01-12 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.