Modeling of High Pressure Rare Gas Lasers

Modeling of High Pressure Rare Gas Lasers
Author :
Publisher :
Total Pages : 198
Release :
ISBN-10 : OCLC:31049455
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Modeling of High Pressure Rare Gas Lasers by : Jong Won Shon

Download or read book Modeling of High Pressure Rare Gas Lasers written by Jong Won Shon and published by . This book was released on 1993 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: A computer model has been developed to investigate the excitation and deexcitation mechanisms and to optimize the laser performance over the wide range of operating parameters. Three rare gas lasers have been computationally investigated: the Xe laser with Ar, He/Ar and Ne/Ar buffer gases, the Ne laser with He/Ar buffer gases and the Ar laser with He buffer gases. The infrared atomic Xe laser (5d $to$ 6p) is an attractive candidate for fission-fragment excitation which provides low-power deposition (1-100 W cm$sp{-3}$), long pulse lengths (1-10 ms), and high energy deposition (100s J $lsp{-1}$). Optical gain at 1.73 and 2.03 $mu$m has recently been measured in a reactor-excited Xe laser yielding values exceeding 0.03-0.05 cm$sp{-1}$ at power depositions of less than 10s W cm$sp{-3}.$ Gain was also found to rapidly terminate before the peak of the pump pulse under some experimental conditions. A computer model has been developed to predict gain in fission-fragment-excited Xe lasers, and these experiments have been analyzed. It is found that the termination of gain is most likely attributable to gas heating which increases the electron density, leading to electron collision quenching. The specific dependence of gain on pump rate suggests that a reduced rate of recombination of molecular ions with increasing gas temperature is partly responsible for this behavior. The high pressure atomic Ne laser operates on four visible transitions between the $3p$ and $3s$ manifolds. Oscillation at 585 nm ($3pprime$ (1/2) $sb0 to 3sprime$ (1/2) $sb1$) with efficiency of $>$1% has been demonstrated by others. The upper laser level is believed to be populated by dissociative recombination of Ne$sb2sp+$, while state-selective Penning reactions relax the lower laser levels. To investigate these pumping mechanisms, experimental and modeling studies have been performed on a short pulse e-beam excited Ne laser, using He/Ne/Ar mixtures. The high pressure ($ge$0.5 atm) atomic Ar laser (3d $to$ 4p) oscillates on four infrared transitions (1.27-2.4 $mu$m). Quasi-continuous oscillation on the 1.79 $mu$m transition has been obtained using electron-beam and fission-fragment excitations over a wide range of power deposition and gas pressure. In this regard, a computer model has been developed to investigate excitation mechanisms of the Ar laser. Results from the model suggest that the upper laser level of the 1.79 $mu$m transition (Ar(3d (l/2) $sb1$)) is dominantly populated by dissociative recombination of HeAr$sp+.$ In contrast, the dissociative recombination of Ar$sb2sp+$ is believed to predominantly produce Ar(4s) states. Electro-ionization from Ar metastables at moderate to high pump rates is responsible for the high efficiency of the Ar laser. Gain and laser oscillation are discussed and compared to measurements made for He/Ar gas mixtures which use various Ar mole fractions and total pressures. (Abstract shortened by UMI.)


Modeling of High Pressure Rare Gas Lasers Related Books

Modeling of High Pressure Rare Gas Lasers
Language: en
Pages: 198
Authors: Jong Won Shon
Categories:
Type: BOOK - Published: 1993 - Publisher:

DOWNLOAD EBOOK

A computer model has been developed to investigate the excitation and deexcitation mechanisms and to optimize the laser performance over the wide range of opera
Computer Modeling of Gas Lasers
Language: en
Pages: 427
Authors: Kenneth Smith
Categories: Science
Type: BOOK - Published: 2013-06-29 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Gas Lasers
Language: en
Pages: 486
Authors: E. W. McDaniel
Categories: Science
Type: BOOK - Published: 2013-10-22 - Publisher: Academic Press

DOWNLOAD EBOOK

Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. To
Nuclear Science Abstracts
Language: en
Pages: 680
Authors:
Categories: Nuclear energy
Type: BOOK - Published: 1976 - Publisher:

DOWNLOAD EBOOK

Pulsed Gas Lasers
Language: en
Pages: 392
Authors: Gennadiĭ Andreevich Mesi︠a︡t︠s︡
Categories: Technology & Engineering
Type: BOOK - Published: 1995 - Publisher: SPIE Press

DOWNLOAD EBOOK