Data Stream Management

Data Stream Management
Author :
Publisher : Springer
Total Pages : 528
Release :
ISBN-10 : 9783540286080
ISBN-13 : 354028608X
Rating : 4/5 (08X Downloads)

Book Synopsis Data Stream Management by : Minos Garofalakis

Download or read book Data Stream Management written by Minos Garofalakis and published by Springer. This book was released on 2016-07-11 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, systems, and applications. The collection of chapters, contributed by authorities in the field, offers a comprehensive introduction to both the algorithmic/theoretical foundations of data streams, as well as the streaming systems and applications built in different domains. A short introductory chapter provides a brief summary of some basic data streaming concepts and models, and discusses the key elements of a generic stream query processing architecture. Subsequently, Part I focuses on basic streaming algorithms for some key analytics functions (e.g., quantiles, norms, join aggregates, heavy hitters) over streaming data. Part II then examines important techniques for basic stream mining tasks (e.g., clustering, classification, frequent itemsets). Part III discusses a number of advanced topics on stream processing algorithms, and Part IV focuses on system and language aspects of data stream processing with surveys of influential system prototypes and language designs. Part V then presents some representative applications of streaming techniques in different domains (e.g., network management, financial analytics). Finally, the volume concludes with an overview of current data streaming products and new application domains (e.g. cloud computing, big data analytics, and complex event processing), and a discussion of future directions in this exciting field. The book provides a comprehensive overview of core concepts and technological foundations, as well as various systems and applications, and is of particular interest to students, lecturers and researchers in the area of data stream management.


Data Stream Management Related Books

Data Stream Management
Language: en
Pages: 528
Authors: Minos Garofalakis
Categories: Computers
Type: BOOK - Published: 2016-07-11 - Publisher: Springer

DOWNLOAD EBOOK

This volume focuses on the theory and practice of data stream management, and the novel challenges this emerging domain poses for data-management algorithms, sy
Stream Data Processing: A Quality of Service Perspective
Language: en
Pages: 341
Authors: Sharma Chakravarthy
Categories: Computers
Type: BOOK - Published: 2009-04-09 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The systems used to process data streams and provide for the needs of stream-based applications are Data Stream Management Systems (DSMSs). This book presents a
Data Stream Management
Language: en
Pages: 65
Authors: Lukasz Golab
Categories: Computers
Type: BOOK - Published: 2010 - Publisher: Morgan & Claypool Publishers

DOWNLOAD EBOOK

In this lecture many applications process high volumes of streaming data, among them Internet traffic analysis, financial tickers, and transaction log mining. I
Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing
Language: en
Pages: 228
Authors: Simon James Fong
Categories: Technology & Engineering
Type: BOOK - Published: 2020-08-25 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book aims to provide some insights into recently developed bio-inspired algorithms within recent emerging trends of fog computing, sentiment analysis, and
Stream Data Management
Language: en
Pages: 179
Authors: Nauman Chaudhry
Categories: Computers
Type: BOOK - Published: 2005-09-19 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Researchers in data management have recently recognized the importance of a new class of data-intensive applications that requires managing data streams, i.e.,