Bioprocess Development for Plasmid-based Vaccine Production

Bioprocess Development for Plasmid-based Vaccine Production
Author :
Publisher :
Total Pages : 508
Release :
ISBN-10 : OCLC:1011507916
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Bioprocess Development for Plasmid-based Vaccine Production by : Clarence Ongkudon

Download or read book Bioprocess Development for Plasmid-based Vaccine Production written by Clarence Ongkudon and published by . This book was released on 2011 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmid DNA (pDNA) vaccine is a promising vaccine technology, with better safety profile, more economical production and transport logistics, than conventional viral vaccines. Most importantly, pDNA vaccines elicit different immune responses including antibody-mediated, CD4 T-cell-mediated and CD8 T-cell-mediated immune responses, for defending against viral infections and cancer. The increasing number of preclinical and clinical trials on plasmid vaccines has triggered the need to make more in less time. Recent developments in theproduction of plasmid therapeutics involve the establishment of innovative and cost effective methods as well as simplified operations. This dissertation reports fundamental studies essential to the development of a rapid economically-viable plasmid production system which is cGMP-compatible. Optimisation of upstream bacterial fermentation and continuousdownstream purification of the plasmid vaccine fraction are the main aspects considered in the project of this dissertation. Process variables required to improve the volumetric and specific yields of a model plasmid-based measles vaccine (pcDNA3F) harboured in E. coli DH5[alpha] were investigated. A cGMP-compatible method offering the capacity to continuouslyproduce homogeneous supercoiled pDNA from clarified bacterial lysate using a monolithicadsorbent was developed. The method involved optimisation of the adsorbent characteristics, ligand functionalisation and chromatographic process conditions. The feasibility of using free metal ions to preferentially precipitate endotoxins (LPS) from a clarified plasmid DNAcontainingbacterial lysate was investigated. Screening of various free metal ions for effectiveendotoxin removal and optimisation of process conditions, such as pH, ion concentration, temperature and incubation time, using central composite design experiments were performed. The potential and advantages of using Zn2+-induced LPS aggregation as a secondary pDNA purification method was validated by studying the interaction of Zn2+ with LPS and pDNA. A comparative economic analysis on the basis of vaccine cost per dose for influenza vaccine produced via pDNA vaccine technology and fertilised egg-based technology was also studied. Experimental results from growth medium optimisation in 500 mL culture showed a maximum volumetric yield of 13.65 mg/L, twice the amount generated using a standard medium (PDM). Fed-batch fermentation in combination with exponential glycerol feeding strategy resulted in a significant increase of 110 mg/L pcDNA3F volumetricyield and a specific yield of 14 mg/g. In addition, growth pH variation (6 to 8.5) andtemperature fluctuation (35 oC to 45 oC) also resulted in improved plasmid yield.Chromatographic purification of pDNA using a triethylamine-activated conical monolithicadsorbent resulted in preferential pcDNA3F adsorption with optimum resolution achievedunder the conditions of 400 nm pore size of monolith, 0.7 M NaCl (pH 6) of binding bufferand 3 % B/min of gradient elution up to 1 M NaCl. Plasmid volumetric yield and recovery of ~3g/L and ~90% were obtained. Contaminant levels recorded were protein (0.01 mg/L), LPS(0.12 EU/mg) with no detectable gDNA and RNA. Results from endotoxin removal andanalysis showed that ZnSO4 displayed the highest endotoxin removal efficiency (~91%) and plasmid recovery (~100%). It was found that selective endotoxin precipitation ( 0.05 EU/Mg) could effectively be carried out during neutralisation in alkaline cell lysis at a pH condition similar to that of clarified cell lysate, a low ZnSO4 concentration (0.5 M), a minimum incubation time (30 min) and a temperature of 15 oC. Apparently, the lipopolysaccharide (LPS) showed a decreased aggregate size at the start of the ZnSO4 addition before increasing gradually. Results from the LPS aggregation analysis drew a hypothesis thatcationic close range encounter and interaction with LPS monomers may contribute to LPS self-aggregation whilst bridging of LPS monomers may increase the LPS aggregate size to a greater extent compared to that of self-aggregation. Specifically, addition of Zn2+ resulted in the largest number of LPS particles per aggregate and the value of aggregation constant (Km)for LPS-Zn2+ was substantially low (0.28 M) and considerably large (2 M) for pDNA-Zn2+,indicating its preferential ability to remove LPS from pDNA-containing solutions. The economic studies suggested that pDNA-based influenza vaccine production was highly dependent on the selling price and production volume. A similar cost per dose of about $2 was calculated although most of the manufacturing costs for plasmid DNA vaccine were lower than inactivated virus vaccine. This dissertation has developed a simple bioprocess framework to successfully improve production specification of plasmid vaccines using pcDNA3F as a model. The method offers ease of plasmid DNA purification due to reduced bulk impurities, cost-efficiency and most importantly high endotoxin removal (> 80%) and plasmid recovery (> 90% ). The technology will have a great impact on overall plasmidproduction and in particular on the development of axial flow monolithic purification in combination with selective endotoxin precipitation.


Bioprocess Development for Plasmid-based Vaccine Production Related Books

Bioprocess Development for Plasmid-based Vaccine Production
Language: en
Pages: 508
Authors: Clarence Ongkudon
Categories:
Type: BOOK - Published: 2011 - Publisher:

DOWNLOAD EBOOK

Plasmid DNA (pDNA) vaccine is a promising vaccine technology, with better safety profile, more economical production and transport logistics, than conventional
Development of New Tools for the Production of Plasmid DNA Biopharmaceuticals
Language: en
Pages: 108
Authors: Diana Morgan Bower
Categories:
Type: BOOK - Published: 2012 - Publisher:

DOWNLOAD EBOOK

DNA vaccines and gene therapies that use plasmid DNA (pDNA) as a vector have gained attention in recent years for their good safety profile, ease of manufacturi
Bioprocessing of Viral Vaccines
Language: en
Pages: 267
Authors: Amine Kamen
Categories: Medical
Type: BOOK - Published: 2022-09-06 - Publisher: CRC Press

DOWNLOAD EBOOK

This book focuses on cell culture-produced viral vaccines to meet the needs of the rapidly expanding research and development in academia and industry in the fi
Vaccine Development and Manufacturing
Language: en
Pages: 452
Authors: Emily P. Wen
Categories: Technology & Engineering
Type: BOOK - Published: 2014-10-06 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

Vaccine Manufacturing and Production is an invaluable reference on how to produce a vaccine - from beginning to end - addressing all classes of vaccines from a
Bioreactor Design Concepts for Viral Vaccine Production
Language: en
Pages: 476
Authors: Surajbhan Sevda
Categories: Science
Type: BOOK - Published: 2024-05-12 - Publisher: Elsevier

DOWNLOAD EBOOK

Bioreactor Design Concepts for Viral Vaccine Production covers a range of interdisciplinary chapters from the engineering perspective of bioreactor design to th