Principles of Artificial Neural Networks
Author | : Daniel Graupe |
Publisher | : World Scientific |
Total Pages | : 382 |
Release | : 2013 |
ISBN-10 | : 9789814522748 |
ISBN-13 | : 9814522740 |
Rating | : 4/5 (740 Downloads) |
Download or read book Principles of Artificial Neural Networks written by Daniel Graupe and published by World Scientific. This book was released on 2013 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition OCo all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining."